

- 15. Prove that T ε A (V) is singular if and only if there exists an element N \neq 0 in V such that T(v) = 0.
- 16. Let T ε A (V) and $\lambda \varepsilon$ F. Then prove that λ is an eigen value if T if and only of $\lambda I T$ is singular.
- 17. Show that any square matrix A can be expressed uniquely as the sum of a symmetric matrix and skew symmetric matrix.
- 18. Prove that the eigen values of a unitary transformation are of absolute value 1.

<u>PART – C</u>

Answer any TWO questions

- 19. a) Prove that the vector space V over F is a direct sum of two of its subspaces w_1 and w_2 if and only if $V = w_1 + w_2$ and $w_1 \cap w_2 = (0)$.
 - b) Let V be a vector space over R. If α , β , γ are linearly independent vectors of V, prove that the vectors $\alpha + \beta$, $\alpha \beta$, $\alpha 2\beta + \gamma$ are also linearly independent over R. (12+8)
- 20. a) If V is a vector space of dimension n and w is a subspace of V, then dim $v/w = \dim v \dim w$.

b) If A and B are subspaces of a vector space V over F, prove that $(A+B)/B \stackrel{\approx}{-} A/(A \cap B)$. (10+10)

21. a) Let V = R³ and suppose that $\begin{pmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 0 & 1 & 3 \end{pmatrix}$ is the matrix of T ε A (V) relative to the standard

basis $N_1 = (1,0,0)$, $N_2 = (0, 1, 0)$, $v_3 = (0, 0, 1)$. Find the matrix of T relative to the basis $w_1 = (1, 1, 0)$, $w_2 = (1, 2, 0)$, $w_3 = (1, 2, 1)$.

b) Let T be a linear transformation on R^2 defined by T (a₁, a₂) = (2a₂, 3a, -a₂). Find the matrix of T relative to the standard basis N₁ = (1, 0) and N₂ = (0, 1). (12+8)

22. a) Verify Cayley – Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and find its inverse. $x_1 + 2x_2 + x_3 = 11$,

b) Show that the system of equations $4x_1 + 6x_2 + 5x_3 = 8$, is inconsistent. (10+10) $2x_1 + 2x_2 + 3x_3 = 19$

\$\$\$\$\$\$\$